Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(2)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275816

RESUMO

Androgen receptor (AR) transcriptional activity significantly influences prostate cancer (PCa) progression. In addition to ligand stimulation, AR transcriptional activity is also influenced by a variety of post-translational modifications (PTMs). A number of oncogenes and tumor suppressors have been observed leveraging PTMs to influence AR activity. Subjectively targeting these post-translational modifiers based on their impact on PCa cell proliferation is a rapidly developing area of research. This review elucidates the modifiers, contextualizes the effects of these PTMs on AR activity, and connects these cellular interactions to the progression of PCa.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdução de Sinais
2.
Front Mol Biosci ; 9: 989851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148008

RESUMO

Although mutations in ADAMTS10 have long been known to cause autosomal recessive Weill-Marchesani Syndrome which is characterized by short stature and ocular abnormalities, more recent work has shown that certain mutations in ADAMTS10 cause glaucoma in dogs. In humans, glaucoma is the leading cause of irreversible vision loss that affects tens of millions of people world-wide. Vision loss in glaucoma is a result of neurodegeneration of retinal ganglion cells that form the inner-most layer of the retina and whose axons form the optic nerve which relays visual information to the brain. ADAMTS10 contributes to the formation of microfibrils which sequester latent transforming growth factor ß (TGFß). Among its many biological functions, TGFß promotes the development of retinal ganglion cells and is also known to play other roles in glaucoma pathogenesis. The aim of this study was to test the hypothesis that ADAMTS10 plays a role in retinal ganglion cell development through regulation of TGFß signaling. To this end, Adamts10 expression was targeted for reduction in zebrafish embryos carrying either a fluorescent reporter that labels retinal ganglion cells, or a fluorescent reporter of pSmad3-mediated TGFß family signaling. Loss of adamts10 function in zebrafish embryos reduced retinal ganglion cell reporter fluorescence and prevented formation of an ordered retinal ganglion cell layer. Targeting adamts10 expression also drastically reduced constitutive TGFß signaling in the eye. Direct inhibition of the TGFß receptor reduced retinal ganglion cell reporter fluorescence similar to the effect of targeting adamts10 expression. These findings unveil a previously unknown role for Adamts10 in retinal ganglion cell development and suggest that the developmental role of Adamts10 is mediated by active TGFß family signaling. In addition, our results show for the first time that Adamts10 is necessary for pSmad3-mediated constitutive TGFß family signaling.

3.
Dev Biol ; 462(2): 152-164, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243887

RESUMO

The process that partitions the nascent vertebrate central nervous system into forebrain, midbrain, hindbrain, and spinal cord after neural induction is of fundamental interest in developmental biology, and is known to be dependent on Wnt/ß-catenin signaling at multiple steps. Neural induction specifies neural ectoderm with forebrain character that is subsequently posteriorized by graded Wnt signaling: embryological and mutant analyses have shown that progressively higher levels of Wnt signaling induce progressively more posterior fates. However, the mechanistic link between Wnt signaling and the molecular subdivision of the neural ectoderm into distinct domains in the anteroposterior (AP) axis is still not clear. To better understand how Wnt mediates neural AP patterning, we performed a temporal dissection of neural patterning in response to manipulations of Wnt signaling in zebrafish. We show that Wnt-mediated neural patterning in zebrafish can be divided into three phases: (I) a primary AP patterning phase, which occurs during gastrulation, (II) a mes/r1 (mesencephalon-rhombomere 1) specification and refinement phase, which occurs immediately after gastrulation, and (III) a midbrain-hindbrain boundary (MHB) morphogenesis phase, which occurs during segmentation stages. A major outcome of these Wnt signaling phases is the specification of the major compartment divisions of the developing brain: first the MHB, then the diencephalic-mesencephalic boundary (DMB). The specification of these lineage divisions depends upon the dynamic changes of gene transcription in response to Wnt signaling, which we show primarily involves transcriptional repression or indirect activation. We show that otx2b is directly repressed by Wnt signaling during primary AP patterning, but becomes resistant to Wnt-mediated repression during late gastrulation. Also during late gastrulation, Wnt signaling becomes both necessary and sufficient for expression of wnt8b, en2a, and her5 in mes/r1. We suggest that the change in otx2b response to Wnt regulation enables a transition to the mes/r1 phase of Wnt-mediated patterning, as it ensures that Wnts expressed in the midbrain and MHB do not suppress midbrain identity, and consequently reinforce formation of the DMB. These findings integrate important temporal elements into our spatial understanding of Wnt-mediated neural patterning and may serve as an important basis for a better understanding of neural patterning defects that have implications in human health.


Assuntos
Padronização Corporal/fisiologia , Placa Neural/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Diencéfalo/metabolismo , Ectoderma/metabolismo , Embrião não Mamífero/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Gástrula/metabolismo , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Mesencéfalo/metabolismo , Sistema Nervoso/metabolismo , Placa Neural/metabolismo , Rombencéfalo/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
Dev Dyn ; 244(3): 507-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25410702

RESUMO

The establishment of anteroposterior identity in the vertebrate neural plate has been a subject of investigation for decades, but molecular explanations of posteriorization were only revealed beginning in the late 1980s. A model has emerged from several key studies that identifies Wnt signaling as a key posteriorizing agent, which evidence suggests specifies anteroposterior fates in a concentration-dependent manner. In this review, we consider the historical context of posteriorization studies and evaluate models for Wnt-dependent posteriorization. With new information about the mode of delivery of many signaling ligands, we propose alternative scenarios to reconcile the Wnt gradient model with the complex process of gastrulation and potential non-secretory mechanisms of Wnt delivery.


Assuntos
Modelos Biológicos , Placa Neural/embriologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Humanos , Placa Neural/citologia , Proteínas Wnt/genética
5.
Dev Biol ; 386(1): 53-63, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24333179

RESUMO

wnt8a Is essential for normal patterning during vertebrate embryonic development, and either gain or loss-of-function gene dysregulation results in severe axis malformations. The zebrafish wnt8a locus is structured such that transcripts may possess two regulatory 3' untranslated regions (UTRs), raising the possibility of post-transcriptional regulation as an important mode of wnt8a signaling control. To determine whether both UTRs contribute to post-transcriptional wnt8a gene regulation, each UTR (UTR1 and UTR2) was tested in transient and transgenic reporter assays. Both UTRs suppress EGFP reporter expression in cis, with UTR2 exhibiting a more pronounced effect. UTR2 contains a 6 base sequence necessary for UTR2 regulatory function that is complementary to the seed of the microRNA, miR-430. A target protector morpholino that overlaps the seed complement stabilizes both reporter mRNAs and wnt8a mRNAs, and produces phenotypic abnormalities consistent with wnt8a gain-of-function. In rescue assays, specific functions can be attributed to each of the two wnt8a proteins encoded by the locus. An interplay of wnt8a.1 and wnt8a.2 regulates neural and mesodermal patterning and morphogenesis as well as patterning between brain subdivisions. Thus, post-transcriptional control of wnt8a is essential to fine tune the balance of the signaling outputs of the complex wnt8a locus.


Assuntos
Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica no Desenvolvimento , Processamento Pós-Transcricional do RNA , Proteínas Wnt/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Padronização Corporal , Proteínas de Fluorescência Verde/metabolismo , MicroRNAs/metabolismo , Dados de Sequência Molecular , Neurônios/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Transdução de Sinais , Transgenes , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...